

DPP – 6 (Kinematics)

Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/41
Video Solution on YouTube:-	https://youtu.be/j4jjZ_XFZgA
Written Solution on Website:-	https://physicsabolics.com/pote/potesDetalis/85

Q 1. A projectile is projected upward with speed 2 m/s on an incline plane of inclination 30° at an angle of 15° from the plane. Then the distance along the plane where projectile will fall is:

(a)
$$\frac{\frac{4}{15}}{(c)}$$

(c) $\frac{\frac{4}{5}}{(\sqrt{3})} - \frac{1}{3}$

Q 2. A projectile is projected with speed u at an angle of 60^{0} with horizontal from the foot of an inclined plane. If the projectile hits the inclined plane horizontally, the range on inclined plane will be:

(b) $\frac{3u^2}{4g}$ (d) $\frac{u^2(\sqrt{21})}{u^2(\sqrt{21})}$

- (a) $\frac{u^2(\sqrt{21})}{2g}$ (c) $\frac{u^2}{2g}$
- Q 3. Find time of flight of the projectile along the inclined plane as shown in figure: $(g = 10 m/s^2)$

Q 4. An inclined plane makes an angle $\theta_o = 30^{\circ}$ with the horizontal. A particle is projected from this plane with a speed of 5 m/s at an angle of elevation $\beta = 30^{\circ}$ with the horizontal as shown in Fig. Find the range of the particle on the plane when it strikes the plane: $(g = 10 \text{ m/s}^2)$

Q 5. Find time of flight of the projectile along the inclined plane as shown in figure: $(g = 10 m/s^2)$

- Q 6. A particle is projected with a velocity of 30 m/s at an angle 60° above the horizontal on a slope of inclination 30°. Find its range and time of flight: $(g = 10 m/s^2)$ (a) 30 m, $\sqrt{3} s$ (b) 30 m, $2\sqrt{3} s$ (c) 60 m, $2\sqrt{3} s$ (d) $60\sqrt{3} m$, 2 s
- Q 7. A particle is projected with a velocity of 30 m/s at an angle 60° above the horizontal on a slope of inclination 30°. Find its angle of hit with incline: $(g = 10 m/s^2)$ (a) 30° (b) 60° (c) 90° (d) 45°
- Q 8. A projectile is fired horizontally from an inclined plane (of inclination 45° with horizontal) with speed = 50 m/s. if $g = 10 m/s^2$, the range measured along the incline is:

(a) 500 <i>m</i>	(b) $500\sqrt{2} m$		
(c) $200\sqrt{2} m$	(d) none of these		

Q 9. An inclined plane is making an angle β with horizontal. A projectile is projected from the bottom of the plane with a speed u at an angle α with horizontal then its maximum range R_{max} is:

(a)
$$R_{max} = \frac{u^2}{g(1-\sin\beta)}$$

(b) $R_{max} = \frac{u^2}{g(1+\sin\beta)}$
(c) $R_{max} = \frac{u}{g(1-\sin\beta)}$
(d) $R_{max} = \frac{u}{g(1+\sin\beta)}$

Q 10. A particle is projected from the bottom of an inclined plane of inclination 30° . At what angle α (from the horizontal) should the particle be projected to get the maximum range on the inclined plane. (a)

(a)	15°	
(c)	45 ⁰	

(b) 30⁰ (d) 60°

nswer Key

Q.1) c	Q.2) d	Q.3) b	Q.4) a	Q.5) b
Q.6) c	Q.7) b	Q.8) b	Q.9) b	Q.10) d